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Abstract. We complete the analysis of meson resonance contributions to chiral low-energy constants of
O(p4) by including all quark–antiquark bound states with orbital angular momentum ≤ 1. Different tensor
meson Lagrangians used in previous work are shown to produce the same final results for the low-energy
constants, once QCD short-distance constraints are properly implemented. We also discuss the possible

relevance of axial-vector mesons with odd C-parity (JPC = 1+−).

1 Introduction

Chiral perturbation theory (CHPT) [1–3] is the effective
field theory of the Standard Model at low energies. Its
explicit degrees of freedom are the pseudoscalar mesons,
the pseudo-Goldstone bosons of spontaneous chiral sym-
metry breaking. Since CHPT is to describe all manifesta-
tions of the Standard Model at low energies, heavier de-
grees of freedom must be present in the theory as well.
As in all effective theories, heavy states manifest them-
selves in the coupling constants of the effective theory
called low-energy constants (LECs) in CHPT. Realistic
estimates of chiral LECs are essential for the predictive
power of CHPT.
In the strong mesonic sector, both empirical and theor-

etical evidence suggests that chiral LECs are saturated by
the lowest-lying meson resonances. In particular, the LECs
of next-to-leading order, O(p4), are dominated by vector
and axial-vector meson exchange [4–6], and to a lesser ex-
tent by scalar and pseudoscalar exchange (see [7, 8] for
recent reviews). A systematic framework for incorporating
meson resonance exchange is based on the 1/Nc expan-
sion of QCD [9–15]. Although largeNc predicts an infinite
number of mesons (stable to leading order in 1/Nc), it
is clear that the lowest-lying states will be most import-
ant. In fact, meson resonance exchange contributions to
the LECs of O(p4) scale as cR/M

2
R for a resonance with

mass MR, where cR is a measure of resonance couplings.
Both the strong coupling to pseudoscalars and the compar-
atively low masses of the lightest vector meson nonet are
responsible for the success of vector meson dominance. The
relevance of other multiplets must be investigated case by
case.
Of all qq bound states with orbital angular momentum

L≤ 1, only the states with JPC = 2++ (tensor mesons) and
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JPC = 1+− (axial-vector mesons with odd C-parity) still
need to be analyzed. Although tensor meson contributions
to chiral LECs were already considered by Donoghue et
al. [6] nearly 20 years ago, very different predictions can
be found in the literature [16–22]. On the other hand, the
influence of 1+− resonances on chiral LECs has not been
considered previously. It is the purpose of the present work
to settle the issue of tensor meson exchange and to in-
vestigate the possible relevance of the 1+− nonet at low
energies. We work in the framework of chiral SU(3) but
compare also with previous predictions for tensor contribu-
tions within chiral SU(2).
In Sect. 2 we recall the phenomenological status of the

O(p4) LECs L1, L2, L3, L9 and L10 and the evidence for
resonance saturation. The importance of incorporating the
proper short-distance constraints is exemplified for the
vector form factor of the pion. In Sect. 3 we introduce the
chiral Lagrangian for tensor mesons and the most gen-
eral coupling of lowest order to the pseudoscalar mesons.
It is shown that two of the three couplings do not con-
tribute to tensor meson decay amplitudes. In the follow-
ing section we investigate the constraints from axiomatic
field theory for elastic meson–meson scattering. Applied
to the tensor meson exchange amplitudes, the constraints
fix the tensor contributions to the LECs L1, L2 and L3
uniquely in terms of the single coupling constant governing
tensor meson decays. We compare our results with previ-
ous work on tensor meson exchange. In Sect. 5 we turn to
the axial-vector mesons with JPC = 1+−. Although they
superficially contribute to the same LECs as the vector
mesons, albeit with opposite sign, the same short-distance
constraints that determine the vector meson contributions
uniquely [5] imply the absence of all 1+− contributions to
the LECs of O(p4). Section 6 summarizes our conclusions.
Two appendices contain basic features of the Lagrangians
for symmetric (spin 2) and antisymmetric tensor fields
(spin 1).
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2 Low-energy couplings
and resonance exchange

Besides the leading-order Lagrangian

L2 =
F 2

4
〈uµuµ+χ+〉 (1)

we shall be concerned with the strong chiral Lagrangian of
O(p4) [3]. For chiral SU(3), it can be written in the form

L4 = L1〈u
µuµ〉

2+L2〈u
µuν〉〈uµuν〉+L3〈(u

µuµ)
2〉

+L4〈u
µuµ〉〈χ+〉+L5〈u

µuµχ+〉+L6〈χ+〉
2

+L7〈χ−〉
2+
L8

2
〈χ2++χ

2
−〉− iL9〈f+µνu

µuν〉

+
L10

4
〈f+µνf

µν
+ −f−µνf

µν
− 〉 (2)

in terms of the 10 LECs L1, . . . , L10. The various matrix
fields are defined as usual (see, e.g. [4]):

uµ = i
{
u† (∂µ− irµ)u−u (∂µ− i�µ) u

†
}
,

χ± = u
†χu†±uχ†u ,

f±µν = uFLµνu
†±u†FRµνu ,

FRµν = ∂µrν −∂νrµ− i[rµ, rν ] ,

FLµν = ∂µ�ν−∂ν�µ− i[�µ, �ν] . (3)

Here, u(φ) is the coset space element parametrized by the
Goldstone fields. The external matrix fields vµ, aµ, s, p are
contained in rµ = vµ+aµ, �µ = vµ−aµ, χ = 2B(s+ ip).
The symbol 〈. . . 〉 denotes the 3-dimensional flavor trace.
The LECs of lowest order B, F are related to the quark
condensate and to the pion decay constant, respectively.
Only the LECs L1, L2, L3, L9 and L10 will be rele-

vant for the following analysis. The present phenomenolog-
ical status and the resonance contributions of the standard
variety V(1−−), A(1++), S(0++) are collected in Table 1
(P(0−+) exchange does not contribute in this case). Keep-
ing in mind that resonance exchange does not fix the renor-
malization scale of the renormalized LECs Li(µ), the over-
all agreement with the phenomenological values suggests
that V, A and S already saturate the LECs in Table 1.
In fact, scalar exchange makes only a relatively small

Table 1. Phenomenological values and theoretical estimates
for the SU(3) LECs Li(Mρ) in units of 10

−3. The first column
shows the original values of [3], the second displays the current
values taken from [23] and references therein. The third column
contains the resonance saturation results of [4]. The value for
L9 was taken as input in [4]

i [3] [23] [4]

1 0.7±0.3 0.43±0.12 0.6
2 1.3±0.7 0.73±0.12 1.2
3 −4.4±2.5 −2.35±0.37 −3.0
9 6.9±0.7 5.93±0.43 6.9
10 −5.5±0.7 −5.09±0.47 −6.0

contribution to L3. On the other hand, the situation in
Table 1 certainly leaves room for additional contributions.
We therefore include all meson resonances corresponding
to qq bound states with orbital angular momentum L≤ 1.
From the point of view of quantum numbers, states with
JPC = 2++ and 1+− could in principle contribute to some
of the LECs in Table 1.
We follow here the traditional approach of chiral reson-

ance Lagrangians [4]. Compared to studying Green func-
tions directly with a large-Nc inspired ansatz, the La-
grangian approach offers the possibility of integrating out
the resonance fields once and for all in the generating
functional of Green functions (to leading order in 1/Nc),
thereby generating all contributions of a given order. In
addition, chiral symmetry is of course guaranteed so that
chiral Ward identities are satisfied automatically.
A priori, the chiral resonance Lagrangian knows noth-

ing about the short-distance structure of QCD. Therefore,
the Lagrangian approach must always be supplemented by
short-distance constraints [5]. This will turn out to be es-
pecially important for resonance contributions of the type
JPC = 2++ and 1+−. It will be sufficient to implement the
same constraints that were used to establish the unique-
ness of vector and axial-vector contributions [5] to the
LECs in Table 1.
Short-distance constraints refer to Green functions or

amplitudes but not to special resonance exchanges. Is it
then legitimate to apply those constraints to a given reson-
ance exchange contribution if only the sum of (an infinite
number of) such exchanges must satisfy the constraints?
An instructive example is provided by the vector form

factor of the pion FπV(t). From the asymptotic behavior
of the I = 1 vector current two-point function in QCD we
know [24] that FπV(t) satisfies a dispersion relation with at
most one subtraction:

FπV(t) = 1+
t

π

∫ ∞

0

dt′
ImFπV(t

′)

t′(t′− t− iε)
. (4)

To first non-trivial order in the low-energy expansion,
FπV(t) is given by [25]

FπV(t) = 1+
2

F 2
L9(µ)t+

2

F 2
Φ(t,M2π ,M

2
K ;µ)+O(p

6) ,

(5)

where the function Φ(t,M2π ,M
2
K ;µ) accounts for pion and

kaon loops. The slope of the form factor gives rise to the
sum rule

L9(µ)+
dΦ

dt
(0,M2π,M

2
K ;µ)+O(p

6) =
F 2

2π

∫ ∞

0

dt
ImFπV(t)

t2
.

(6)

Both the scale dependence of L9 and the loop function Φ
are non-leading in 1/Nc. Since LECs do not depend on
light quarkmasses, we can take the chiral limit to eliminate
contributions from higher-order LECs. At leading order in
1/Nc, the absorptive part is given by

ImFπV(t) =
2π

F 2

∑

R

κRM
2
Rδ(t−M

2
R) (7)
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giving rise to the form factor

FπV(t) = 1+
2t

F 2

∑

R

κR

M2R− t− iε
. (8)

To leading order in 1/Nc, L9 is therefore of the familiar
form

L9 =
∑

R

κR

M2R
, (9)

where κR is related to the product of resonance couplings
to the electromagnetic current and to two pions. To a given
resonance we can associate unambiguously the contribu-
tion

LR9 =
κR

M2R
, (10)

even though only the total L9 emerges from the sum
rule (6). Of course, the same conclusion is reached by sub-
jecting each resonance separately to the short-distance
constraints, which in the present case are encoded in the
once-subtracted dispersion relation (4).
In the approach with chiral resonance Lagrangians,

consistency with short-distance constraints is not auto-
matic. In general, local contributions from the chiral La-
grangian (2) of O(p4) must be added to achieve consis-
tency [5]. An important lesson can be drawn from the ex-
ample of the pion form factor: only pole terms in the form
factor contribute to the LEC L9. This will be of special rel-
evance for the evaluation of 1+− contributions to the LECs
in Sect. 5 .

3 Tensor meson exchange

In this section we compute the effective action due to the
exchange of the lowest-lying nonet of tensor mesons with
JPC = 2++. We describe these particles by a symmetric
Hermitian rank-2 tensor field

Tµν = T
0
µν

λ0√
2
+
1
√
2

8∑

i=1

λiT
8,i
µν ,

Tµν = Tνµ . (11)

The octet and the singlet components are given by

1
√
2

8∑

i=1

λiT
8,i =

⎛

⎜
⎜⎜
⎝

a02√
2
+
f82√
6

a+2 K∗+2

a−2 −
a02√
2
+
f82√
6
K∗02

K∗−2 K̄∗02 −
2f82√
6

⎞

⎟
⎟⎟
⎠
,

T 0 = f02 . (12)

The tensor nonet couples to pseudoscalar mesons via the
Lagrangian (see Appendix A)

L=−
1

2
〈TµνD

µν,ρσ
T Tρσ〉+ 〈TµνJ

µν
T 〉 , (13)

with a symmetric tensor current JµνT = J
νµ
T . For the octet

part, the derivatives in Dµν,ρσT in (A.2) must be replaced
by chirally covariant derivatives. This modification will not
affect the structure of the effective action up to O(p4).
The most general symmetric tensor current JµνT of

O(p2) (relevant for LECs of O(p4)) consists of three
terms [26, 27]:

JµνT = J
µν
1 + g

µνJ2 ,

Jµν1 = gT {u
µ, uν} , J2 = βu

µuµ+γχ+ . (14)

In the following section, we will consider elastic meson–
meson scattering. For this purpose, we can use the free
tensor propagator (A.3) in the effective action for meson–
meson scattering:

SeffT (MM →MM)

=
1

2

∫
d4xd4y

〈
JµνT (x)G

T
µν,ρσ(x−y)J

ρσ
T (y)

〉
. (15)

It will be convenient to separate the contributions of Jµν1
and J2 to the effective action. Due to the structure of the
propagator (A.3), the effective action takes the form

SeffT (MM →MM)

=
1

2

∫
d4xd4y

〈
Jµν1 (x)G

T
µν,ρσ(x−y)J

ρσ
1 (y)

〉

−
1

3M2T

∫
d4x
〈
J2(x)

(
gµν −2M

−2
T ∂µ∂ν

)
Jµν1 (x)

〉

−
1

3M2T

∫
d4x
〈
J2(x)

(
2−M−2T �

)
J2(x)

〉
. (16)

The important observation is that the tensor current gµνJ2
contributes only to the local part of the effective action of
O(p4) and higher. As we shall see in the following section,
such local actions must in fact be added to the bare ten-
sor exchange in order to satisfy appropriate short-distance
constraints. Thus, the couplings β, γ in the current J2 can
always be absorbed in the effective chiral Lagrangians. We
therefore set them to zero in this section without loss of
generality. Nevertheless, it will turn out to be convenient
to reinstall β �= 0 for the discussion of short-distance con-
straints in pion–pion scattering in the next section.
The couplings β and γ are arbitrary because, in con-

trast to the coupling constant gT in (14), they cannot be
determined from the partial decay widths of tensor res-
onances. The tensor field is traceless on-shell (εµµ = 0 in
(A.8)) so that β and γ do not enter matrix elements for
tensor meson decays.
In order to determine the LECs of O(p4) due to tensor

exchange, we need to take the leading term of the propaga-
tor (A.3) in an expansion in 1/M2T:

GTµν,ρσ(x)
∣∣
O(M−2

T
)

=
1

6M2T
{3 (gµρgνσ+ gµσgνρ)−2gµνgρσ} δ

(4)(x) .

(17)
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From the first term in the effective action (16) we then ob-
tain an effective Lagrangian LT4,bare of O(p

4) from tensor
exchange:

LT4,bare

=
g2T
2M2T

{
〈uµu

µ〉2+2 〈uµuν〉 〈u
µuν〉−

10

3
〈uµuµu

νuν〉

}
.

(18)

Comparing with the general Lagrangian (2) of O(p4), we
find the following (bare) LECs due to tensor exchange:

LT1,bare =
g2T
2M2T

, LT2,bare = 2L
T
1,bare ,

LT3,bare =−
5g2T
3M2T

. (19)

We denote the Lagrangian (18) and the LECs (19) as bare
quantities, because we still have to check for consistency
with the short-distance structure of QCD. As we shall
see in the next section, the short-distance constraints will
modify the bare LECs substantially. Finally, we note that
exchange of the tensor nonet is of course compatible with
the large-Nc prediction L2 = 2L1.

4 Short-distance constraints
for tensor exchange

The LECs L1, L2, L3 all contribute to meson–meson scat-
tering. It will turn out to be sufficient to investigate for-
ward dispersion relations for elastic meson–meson scat-
tering amplitudes. Since the Li do not depend on light
quark masses, all calculations will be performed in the chi-
ral limit.
We briefly recall the well-known structure of the

forward dispersion relation for an elastic channel with
s↔ u symmetry, e.g., π+π0→ π+π0 (for a recent account
see [8]). In this case, general quantum field theory guar-
antees [28, 29] that the scattering amplitude A(ν, t) satis-
fies a once-subtracted forward dispersion relation in ν =
(s−u)/2:

A(ν, t= 0) =A(0, 0)+
ν2

π

∫ ∞

0

dν′ 2
Abs A(ν′, 0)

ν′ 2 (ν2−ν′ 2)
. (20)

In the chiral limit and to leading order in 1/Nc, exchange of
a resonance gives rise to an amplitude

A(ν, 0) =
cRν

2

ν2−M4R
, (21)

where cR is related to the partial decay width Γ (R→MM)
in this case. On the other hand, resonance exchange from
a chiral resonance Lagrangian such as (13) will produce an
amplitude of the general form

AR(ν, 0) =
PR(ν

2)

ν2−M4R
, (22)

with a polynomial PR(ν
2) satisfying the on-shell condition

PR(M
4
R) = cRM

4
R. Decomposing the polynomial PR(ν

2) as

PR(ν
2) = PR(M

4
R)+

(
ν2−M4R

)
PR(ν

2) , (23)

the equality AR(ν, 0) = A(ν, 0) forces PR(ν
2) to be a con-

stant,

PR(ν
2) = cR . (24)

This will not be the case for our tensor meson La-
grangian (13). Therefore, the dispersion relation (20) re-
quires the addition of a (counterterm) polynomial Pc(ν

2)
from the effective chiral Lagrangians of O(p4) and higher:

AR(ν, 0) = Pc(ν
2)+PR(ν

2)+
PR(M

4
R)

ν2−M4R
. (25)

The counterterm polynomial Pc(ν
2) is then fixed by the

short-distance constraint to satisfy

Pc(ν
2)+PR(ν

2) = cR , (26)

ensuring at the same time the correct low-energy behavior
of the resonance exchange amplitude:

AR(ν, 0) =A(ν, 0) =−
cR

M4R
ν2+O(p8) . (27)

The coefficient of ν2 depends only on the mass and on the
partial decay width of the resonance and it defines the res-
onance contribution to a certain combination of the Li.
Even though we are interested in the low-energy be-

havior, the same conclusion is obtained by comparing the
high-energy behavior of AR(ν, 0) with A(ν, 0) :

lim
ν2→∞

A(ν, 0) = cR = lim
ν2→∞

AR(ν, 0)

= lim
ν2→∞

(
Pc(ν

2)+PR(ν
2)
)
. (28)

It will often be more convenient to investigate the high-
energy behavior.

4.1 Elastic meson–meson scattering

The meson–meson scattering amplitude due to tensor
meson exchange can be extracted from the effective ac-
tion (16). Following the discussion in Sect. 3, we are led to
include only the interaction term Jµν1 . It turns out that the
short-distance constraints embodied in the forward disper-
sion relation (20) would then require the addition of local
terms not only of O(p4) but also of O(p6).
By a judicious choice of the (a priori) arbitrary coup-

ling constant β in (14) we can avoid having to include terms
of O(p6) at this stage, where we are only interested in the
LECs ofO(p4). The specific value of β ensuring the absence
of p6 terms is

β =−gT (29)
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corresponding to a special structure of the tensor coup-
ling JµνT . In this case, the bilinear terms in uµ in J

µν
T

occur in the same combination as in the energy-momentum
tensor [30] associated with the lowest-order chiral La-
grangian (1). It was already observed by Bellucci et al. [26,
27] that this choice of JµνT leads to a smoother high-energy
behavior than in the general case.
We hasten to emphasize that our final values for the

LECs L1, L2, L3 will be completely independent of the
choice of β. As already pointed out, β appears in the scat-
tering amplitude only through polynomial terms that can
always be absorbed in contributions from the chiral La-
grangians of O(p4) (and O(p6) in general). The main ad-
vantage of the choice (29) is that it allows us to omit the
qualifying statement “up to terms of O(p6)” after every
other equation.
We now consider pion–pion scattering. The scatter-

ing amplitude T (πaπb→ πcπd) ≡ Tab,cd(s, t, u) can be ex-
pressed in terms of a single function A(s, t, u) = A(s, u, t)
as

Tab,cd(s, t, u) =A(s, t, u)δabδcd+A(t, s, u)δacδbd

+A(u, t, s)δadδbc . (30)

From the effective action (16) we obtain the tensor ex-
change amplitude in the chiral limit (for β =−gT):

AT(s, t, u) =
2g2T

F 4(M2T− s)

[
(t−u)2−

s2

3

]
. (31)

In order to satisfy the short-distance constraints, we have
to add an explicit local amplitude from the O(p4) La-
grangian (2):

ASD(s, t, u) =
4

F 4

[(
2LSD1 +L

SD
3

)
s2+LSD2 (t

2+u2)
]
.

(32)

The LSDi will be determined from the short-distance con-
straints but they are of course not the final values of the
LECs associated with tensor meson exchange. The final
values are obtained by expanding the complete amplitude
AT(s, t, u)+ASD(s, t, u) to O(p

4):

AT(s, t, u)+ASD(s, t, u)

=
2g2T
F 4M2T

[
(t−u)2−

s2

3

]

+
4

F 4
[(
2LSD1 +L

SD
3

)
s2+LSD2 (t

2+u2)
]
+O(p6)

=
4

F 4

[
s2
(
2LSD1 +L

SD
3 −

2g2T
3M2T

)

+(t2+u2)

(
LSD2 +

g2T
M2T

)]
+O(p6) . (33)

We can immediately read off the total tensor exchange
contributions 2LT1 +L

T
3 and L

T
2 from the last expansion.

To obtain LT1 and L
T
3 separately, we either need another

independent channel, e.g., elasticKπ scattering, or we ap-
peal to the large-Nc relation L2 = 2L1 that is of course

respected by exchange of a tensor nonet. Both approaches
lead to the same results:

LT2 = 2L
T
1 =

g2T
M2T
+LSD2 ,

LT3 =−
5g2T
3M2T

+LSD3 . (34)

Referring back to (19), we observe that the bare tensor con-
tributions to the Li are identical. This equality is to some
extent accidental because it happens to hold specifically for
the special cases β = 0 (adopted in Sect. 3) and β = −gT
assumed here. For other values of β the bare term LT3,bare
will in general be different, while LT1,bare, L

T
2,bare remain

unchanged [31]. However, as the following arguments will
show, the total values LTi will always be the same.
In order to determine the short-distance induced contri-

butions LSDi , we consider the following two channels with
s↔ u symmetry:

A (π+π0→ π+π0) =A(t, s, u) (35)

A (π0π0→ π0π0) =A(s, t, u)+A(t, s, u)+A(u, t, s) .

(36)

The forward scattering amplitude for the π+π0 channel is
therefore

AT(ν, 0)|π+π0→π+π0 =
8g2T
F 4M2T

ν2+
8

F 4
LSD2 ν

2 . (37)

From the general discussion of the forward amplitude at
the beginning of this section we conclude that AT(ν, 0)
must vanish for the case of π+π0 scattering (absence of
a pole term). This constraint fixes LSD2 to be

LSD2 =−
g2T
M2T
. (38)

For the second channel we find

AT(ν, 0)|π0π0→π0π0 =
8g2TM

2
T

3F 4
ν2

M4T−ν
2
+
8g2T
F 4M2T

ν2

+
8

F 4
(
2LSD1 +2L

SD
2 +L

SD
3

)
ν2 .

(39)

Together with (38), the structure of the forward dispersion
relation requires

2LSD1 +L
SD
3 =

g2T
M2T
. (40)

As before, we can either appeal to large Nc or investigate
additional meson–meson scattering channels to arrive at
the following results for the LSDi :

LSD2 = 2L
SD
1 =−

g2T
M2T
, LSD3 =

2g2T
M2T
. (41)

In fact, all channels are compatible with these values. In-
serting into (34), we obtain the complete LECs LTi due to
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tensor meson exchange:

LT1 = L
T
2 = 0 , L

T
3 =

g2T
3M2T

. (42)

Comparing with the bare LECs (19), we observe that the
short-distance constraints have eliminated L1 and L2 alto-
gether. Moreover, the absolute magnitude of L3 is reduced
by a factor of five. Once again, we stress that the so-called
bare values (19) have no intrinsic meaning. Only the final
values (42) can be associated with tensor meson exchange.

4.2 Numerical discussion and comparison
with previous work

The tensor coupling constant gT defined in (14) can be de-
termined from the decay rate Γ (f2(1270)→ ππ). To a good
approximation (see, e.g. [32]), the f2(1270) is the non-
strange partner of an ideal mixture of the SU(3) singlet and
octet isosinglet states:

f2(1270)µν =
(√
2T 0µν +T

8,8
µν

)
/
√
3 . (43)

To the accuracy needed for our purposes, the assumption of
ideal mixing is completely sufficient.
The decay rate Γ (f2(1270)→ ππ) is then given by

Γ (f2(1270)→ ππ) =
g2TM

3
T

40πF 4π

(
1−4M2π/M

2
T

)5/2
.

(44)

With MT =M(f2(1270)) and Γ (f2(1270)→ ππ) taken
from PDG 2006 [33] and with Fπ = 92.4MeV, one finds

|gT|= 28MeV . (45)

This value should be compared with the corresponding
vector and scalar couplings GV [5] and cd [15, 34–36]:

|GV| 	
Fπ√
2
= 65MeV,

46MeV =
Fπ

2
� |cd|�

Fπ√
2
. (46)

Thus, the tensor coupling to pions is not much smaller than
the corresponding vector and scalar couplings. Neverthe-
less, the only non-zero contribution of tensor exchange to
the LECs of O(p4),

LT3 =
g2T
3M2T

= 0.16×10−3 , (47)

is considerably smaller than the sum of vector and scalar
contributions. This is only partly due to the larger mass
MT. We recall that the so-called bare value in (19),

LT3,bare =−
5g2T
3M2T

=−0.80×10−3 , (48)

would amount to a non-negligible contribution to L3 (see
Table 1).

Table 2. Tensor contributions to the SU(2) LECs l1, l2 from
various sources

lT1 ×10
3 lT2 ×10

3

Donoghue, Ramirez, Valencia [6] −0.6 1.9
Dobado, Pelaez [20] −0.6 1.9

Suzuki [16] −0.5 2.0

Katz, Lewandowski, Schwartz [21, 22] −0.7 2.1

Toublan [17, 18] 0.3 0
Ananthanarayan [19] 0.3 0
this work 0.3 0

In much of the previous literature, tensor meson ex-
change was considered in the framework of chiral SU(2).
To O(p4), the SU(3) results can be translated to the SU(2)
LECs lTi through the relations [3]

lT1 = 4L
T
1 +2L

T
3 , (49)

lT2 = 4L
T
2 . (50)

The numerical values for lT1 and l
T
2 from different sources

are collected in Table 2. As far as we are aware, the first
determination of tensor contributions to the li was per-
formed by Donoghue et al. [6]. Their results are identi-
cal to those in [20] and they correspond exactly to our
bare LECs in (19) (β = 0 in our notation). Different ten-
sor meson couplings were used in [16, 21, 22]. In the La-
grangian of [21, 22], the f2(1270) is assumed to couple like
the graviton to the energy-momentum tensor (β =−gT).
Of all the previous work, only Toublan [17, 18] and Anan-
thanarayan [19] took short-distance constraints into ac-
count. In [19] different versions of dispersion relations for
ππ scattering1 were analyzed to determine the f2 contri-
bution to the li. Although Toublan used a different La-
grangian for the tensor fields and applied slightly different
short-distance arguments, we agree with his results in the
SU(2) limit. The agreement with [17–19] underscores our
claim that the final results for tensor meson exchange to
the LECs are model independent, once the high-energy
conditions are properly implemented. On the other hand,
the results in Table 2 document rather convincingly that
the high-energy constraints are essential to arrive at unique
values for the contributions of tensor meson exchange.

5 1+� resonances

The contributions of axial-vector mesons with odd C-pari-
ty (JPC = 1+−) to the LECs of O(p4) have not been con-
sidered up to now. This may partly be due to the fact that
the corresponding nonet has not been unambiguously iden-
tified yet [33]. Only the states h1(1170) and b1(1235) are

1 Starting at O(p6), crossing symmetry imposes additional
constraints on resonance exchange contributions with spin
≥ 2 [19, 37].
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listed in the PDG booklet as respectable resonances.More-
over, there is only limited information on decay widths and
branching ratios. Nevertheless, there are good arguments
for the existence of a complete nonet (e.g. [32]). Although
the masses of this nonet are considerably larger than those
of the lowest-lying vector mesons, they are comparable
with the masses of the axial-vector mesons with positive
C-parity (JPC = 1++). Since the latter make an import-
ant contribution to L10 [4], there is a priori no reason to
disregard the 1+− nonet.
To investigate contributions of spin-1 exchange to the

LECs of O(p4), it is convenient to describe those mesons
in terms of antisymmetric tensor fields (see Appendix B).
Denoting the nonet spin-1 field as Hµν , the kinetic La-
grangian is given by

LH =

〈
−
1

2
∇µHµν∇ρH

ρν +
M2H
4
HµνH

µν

〉
. (51)

As in the case of 1−− and 1++ exchange [4], the SU(3) sing-
let cannot contribute at O(p4). Under parity and charge
conjugation, the relevant octet fieldHµν transforms as

Hµν(t,x)
P
→−ε(µ)ε(ν)Hµν(t,−x) ,

Hµν(x)
C
→−HTµν(x) . (52)

The most general chiral invariant interaction of O(p2) of
the 1+− mesons with the Goldstone bosons respecting P
and C invariance is then given by

Lint[H(1
+−)] = 〈HµνJ

µν
H 〉 (53)

with an antisymmetric tensor current

JµνH =
FH

4
√
2
εµνρσf+ ρσ+

iGH

2
√
2
εµνρσuρuσ. (54)

As already pointed out, the SU(3) singlet field does not
couple because of

〈JµνH 〉= 0. (55)

Expanding around the classical solution in the usual man-
ner, we obtain the effective action induced by 1+− ex-
change

SeffH =
1

2

∫
d4x
〈
HclµνJ

µν
H

〉
. (56)

To O(p4), the effective action is

SeffH =

∫
d4xLH4,bare(x) , (57)

with the Lagrangian LH4,bare given by

LH4,bare =−
1

M2H
〈JHµνJ

µν
H 〉 . (58)

A straightforward calculation produces an effective La-
grangian of the form (2) with

LH1,bare =
1

2
LH2,bare =−

G2H
8M2H

, LH3,bare =−6L
H
1,bare ,

LH9,bare =−
FHGH

2M2H
, LH10,bare =

F 2H
4M2H

. (59)

We have chosen the normalization of couplings in the cur-
rent (54) to facilitate comparison with vector meson ex-
change. Comparing with the results of [4], one finds that
the replacements FV→ FH and GV→GH yield the LECs
in (59) except for an overall change of sign. Except pos-
sibly for L9 (we do not know the relative sign of FH , GH in
contrast to FVGV > 0), these results seem to suggest that
exchange of 1+− resonances reduces the effect of vector me-
son exchange. The relevant question is then: by howmuch?
The bare LECs LHi,bare (i= 1, 2, 3) contribute to elastic

meson–meson scattering. In analogy to the case of vec-
tor mesons [4], we are led to determine the coupling con-
stant GH from the decays of 1

+− resonances to two pseu-
doscalar mesons. But parity conservation does not allow
for such decays. Consequently,H exchange can only lead to
a polynomial contribution to the elastic meson–meson am-
plitude. For example, the pion–pion scattering amplitude
is given by

AH(s, t, u) =
G2H
M2HF

4
(2s2− t2−u2), (60)

in accordance with (59). But this form of the amplitude
is not compatible with the structure of the dispersion re-
lations discussed in Sect. 4. Therefore, the short-distance
constraints require the introduction of an additional con-
tribution from the O(p4) Lagrangian (2) that completely
cancels the H exchange contribution (60):

ASD(s, t, u) =−AH(s, t, u) . (61)

Similarly, H exchange contributes a term linear in t to
the vector form factor of the pion:

FHV (t) =−
FHGH

M2HF
2
t . (62)

Again, there is no pole term becauseH mesons cannot de-
cay into two pions. As discussed in Sect. 2, the absence of
a pole contribution implies that H exchange does not con-
tribute to L9.
Finally, we turn to the VV–AA two-point function

i

∫
d4xeipx〈0|T

[
V iµ(x)V

j
ν (0)−A

i
µ(x)A

j
ν(0)
]
|0〉

= δij

[(
pµpν − gµνp

2
)
Π
(1)
LR(p

2)+pµpνΠ
(0)
LR(p

2)
]
.

(63)

According to QCD the invariant function Π
(1)
LR(p

2) satis-
fies an unsubtracted dispersion relation [24]. Again, H ex-
change is incompatible with the short-distance constraint
because it produces a constant contribution corresponding
to LH10,bare in (59). This contribution must again be can-
celled by a local counterterm leading to the final conclusion
that there are no 1+− exchange contributions to the LECs
of O(p4) at all:

LHi = 0 (i= 1, . . . , 10) . (64)
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6 Conclusions

The saturation of low-energy constants of O(p4) by the
exchange of V, A, S and P meson resonances is a gener-
ally accepted feature of strong dynamics at low energies.
Chiral vector meson dominance can easily be understood
because of the strong coupling to the pseudoscalars and the
comparatively low masses of the lowest-lying vector me-
son nonet. On the other hand, it is much less obvious why
A, S and P resonances should be more important than the
2++ and 1+− states with similar masses. The latter two
multiplets complete the spectrum of qq bound states with
orbital angular momentum ≤ 1.
Setting up the most general chiral Lagrangians for 2++

and 1+− fields and integrating out the resonance fields, the
tensor meson contributions to the LECs L1, L2 and L3
seem to depend on a coupling that cannot be determined
from tensor meson decays. In the case of 1+− exchange,
the same LECs are affected that receive vector meson con-
tributions, albeit with opposite sign. Both results are su-
perficial and must be confronted with the short-distance
constraints of QCD.
In the tensor meson case, the constraints of axiomatic

field theory for elastic meson–meson scattering are actually
sufficient to show that only L3 receives a non-zero contri-
bution. The resulting value LT3 = 0.16×10

−3 is completely
negligible compared to the sum of vector and scalar contri-
butions. Our results agree with those in [17–19] in the limit
of chiral SU(2), but we disagree with all other predictions
in the literature.
The final results for 1+− exchange are even more pro-

nounced. The combined short-distance constraints for elas-
tic meson–meson scattering, the vector form factor of the
pion and the VV–AA two-point function eliminate all con-
tributions of 1+− exchange to the LECs of O(p4).
The final conclusion can be summarized in one sen-

tence: the dominance of V, A, S, P exchange contributions
to the LECs of O(p4) is not an accident.
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Appendix A: Symmetric tensor fields
for spin 2

The Lagrangian for aHermitian spin-2 fieldTµν coupled lin-
early to a source Jµν can bewritten in the form [26, 27, 38]

L=−
1

2
TµνD

µν,ρσ
T Tρσ+TµνJ

µν , (A.1)

with Tµν = Tνµ, Jµν = Jνµ and

Dµν,ρσT =
(
�+M2T

) [1
2
(gµρgνσ+ gµσgνρ)− gµνgρσ

]

+ gρσ∂µ∂ν + gµν∂ρ∂σ (A.2)

−
1

2
(gνσ∂µ∂ρ+ gρν∂µ∂σ+ gµσ∂ρ∂ν + gρµ∂σ∂ν) .

The Feynman propagator is given by

GTµν,ρσ(x) =

∫
d4k

(2π)4
e−ikxPµν,ρσ(k)

M2T−k
2− iε

(A.3)

Pµν,ρσ =
1

2
(PµρPνσ+PνρPµσ)−

1

3
PµνPρσ

Pµν = g
µν −

kµkν

M2T
,

satisfying the differential equation

Dµν,λρT GTλρ,στ (x) =
1

2
(δµσδ

ν
τ + δ

ν
σδ
µ
τ ) δ

(4)(x) . (A.4)

The classical equation of motion

Dµν,ρσT Tρσ = J
µν (A.5)

has the solution

T clµν(x) =

∫
d4yGTµν,ρσ(x−y)J

ρσ(y) . (A.6)

Without the inclusion of auxiliary fields in the Lagran-
gian [17, 18, 39], the tensor field Tµν is neither traceless nor
transverse. However, the corresponding components do not
propagate in accordance with the spin-2 nature of the field:

Pµµ,ρσ(k) =
k2−M2T
3M2T

(
gρσ+

2kρkσ
M2T

)
, (A.7)

kµPµν,ρσ(k) =
M2T−k

2

6M2T
(3kρPνσ+3kσPνρ−2kνPρσ) .

The one-particle matrix element for a spin-2 particle with
momentum k and polarization λ is expressed in terms of
the polarization tensor εµν(k;λ):

〈0 |Tµν(0)|T (k;λ)〉= εµν(k;λ) (A.8)

εµν = ενµ , k
µεµν = 0 , ε

µ
µ = 0 .

The explicit form of the polarization tensor can be found,
e.g., in [40]. For the decay rate of an unpolarized spin-2
particle one needs the sum over polarizations

∑

λ

εµν(k;λ)ερσ(k;λ)
∗ = Pµν,ρσ(k) , (A.9)

where Pµν,ρσ(k) is defined in (A.3).

Appendix B: Antisymmetric tensor fields
for spin 1

For completeness, we collect in this appendix a few basic
formulas for the description of spin-1 fields in terms of an-
tisymmetric tensor fields.
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The Lagrangian for a Hermitian spin-1 field Hµν
coupled linearly to a source Jµν can be written in the form
(e.g., Appendix A in [4])

L=
1

2
HµνD

µν,ρσ
H Hρσ+HµνJ

µν , (B.1)

with Hµν =−Hνµ, Jµν =−Jνµ and

Dµν,ρσH =
1

4
∂λ
[
gρλ (∂µgνσ−∂νgµσ)− gσλ (∂µgνρ−∂νgµρ)

]

+
M2H
4
(gµρgνσ− gµσgνρ) . (B.2)

The Feynman propagator is given by

GHµν,ρσ(x) =

∫
d4k

(2π)4
e−ikxQµν,ρσ(k)

M2H(M
2
H−k

2− iε)
, (B.3)

Qµν,ρσ =
[
gµρgνσ

(
M2H−k

2
)

+gµρkνkσ− gµσkνkρ− (µ↔ ν)
]
,

satisfying the differential equation

Dµν,λρH GHλρ,στ (x) =
1

2
(δµσδ

ν
τ − δ

ν
σδ
µ
τ ) δ

(4)(x) . (B.4)

The classical equation of motion

Dµν,ρσH Hρσ =−J
µν (B.5)

has the solution

Hclµν(x) =−

∫
d4yGHµν,ρσ(x−y)J

ρσ(y) . (B.6)

The one-particle matrix element for a spin-1 particle with
momentum k and polarization λ is expressed in terms of
the usual polarization vector εµ(k;λ):

〈0 |Hµν(0)|H(k;λ)〉 = iM
−1
H [kµεν(k;λ)−kνεµ(k;λ)] ,

kµεµ = 0 . (B.7)
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